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Abstract

We discuss the design, construction, and operation of two semi-autonomous drones during
Summer 2020. The goal of the project is to develop a method for autonomously landing
the drones in a target area designated by a fiducial marker and detected by a camera. We
have constructed two drone platforms, and have designed and created components to adapt
our ideal computational electronics to these platforms. Improvements upon similar projects
include mounting the camera on a gimbal to allow a larger detection range, and using a new
and computationally efficient fiducial marker system. Design choices, practical challenges, and
results are presented. The drones are able to fly reliably and have nearly accomplished the goal
of autonomously landing.

1 Introduction

Autonomous drone flight has wide-ranging applications from power line inspection to package de-
livery. One important aspect of autonomous drone flight that is lacking is autonomous landing, as
a result of the challenges that are specific to landing in an unknown environment, such as obstacles
and uneven ground. A typical method to autonomously land drones is to use computer vision and
fiducial markers to identify and travel to a safe landing area.[1][2][3] Fiducial markers provide a
means of calculating the pose of the drone with respect to the landing pad. However these methods
have not been integrated into the two main open source autonomous flight softwares: ArduPilot
and PX4. These softwares offer only more primitive methods focusing on initial GPS localization
and maintaining a constant rate of descent over the landing pad while performing simpler horizontal
position correction based on vision. These methods are subject to GPS inaccuracies and dangers of
landing even if the landing pad is not seen, meaning that the drone cannot guarantee a landing in a
safe location. Other methods which have used fiducial markers typically use fixed, downward-facing
cameras which can lose sight of the landing pad if the drone is not in the correct orientation, or
in the final phase of landing where the drone is too close to the landing pad for the marker to be
entirely in the camera’s field of view.

This project provides a means of overcoming the aforementioned challenges by maintaining the
drone’s view of the landing pad through an automatically aimed, gimbal-mounted camera which
points at the landing pad’s fiducial marker throughout the entire landing, and by allowing descent
only in a specific region around the landing pad. It also uses a newer fiducial marker called WhyCon
[4] (shown in Figure 1b), which is more computationally efficient than the typically used April Tag
[5] (shown in Figure 1a).



(a) April Tag marker. (b) WhyCon marker.

Figure 1: Examples of fiducial markers which enable visual pose estimation.

This project involved three students: Joshua Springer and Garret Forhofer, hired as part of the
RANNIS Student Innovation Fund, and Kjartan Méar Andersen, hired on a summer job through
Reykjavik University. The work was carried out at Reykjavik University.

2 Methods

In this section we describe the steps in creating a drone platform with the following properties:

e The drone must be stable in manual flight and capable of autonomous flight.
e The drone must be capable of real-time onboard video analysis.

e The drone must detect a fiducial marker and track the fiducial marker by aiming a gimbal-
mounted camera.

e The drone must approach the fiducial marker autonomously and land next to it without
human intervention.

2.1 Construction

The Tarot 680 Pro hexacopter is the base platform selected for this project. The large (680mm
radius), hexacopter design allows it to maintain its stability in relatively high winds. Its Tarot 4108
motors spin 350mm propellers which allow the drone to carry extra instruments for applications
after this project. The foldable, carbon fiber frame provides structural robustness and portability.
It has two batteries in order to create two isolated power systems - one for the computational
and navigational electronics, and one for the propulsion system and gimbal. The power isolation
prevents the motors and gimbal from causing electrical spikes which can damage or disable the
computational electronics. The gimbal allows the drone to capture a stable video image over a wide
angular range.

Joshua and Garret carried out the initial construction process slowly and carefully, placing
emphasis on reliability in all physical and electrical connections. This is to avoid expensive crashes
by minimizing the risk of in-flight component failure. First, we mounted a motor to each of the motor
arms. We soldered bullet connectors to the motor leads to attach them to the speed controllers.



We mounted speed controller to the bottom of each motor mount using a 3D-printed bracket.
We soldered bullet connectors to the speed controller wires, and wire extensions (also with bullet
connectors) were run through the hollow arm tubes because the speed controller wires alone were
too short. After all motors were verified to spin the expected direction according to the ArduPilot
documentation, we placed heat shrink around all bullet connector joints for electrical insulation and
physical strengthening of the connection. We assembled the drone bodies and placed the arms into
their mounting points. We then fastened landing gear to the drone body. After this, we installed
the computational and navigational electronics were to the mounting plate. Joshua installed the
operating systems for the flight controller and companion boards, along with all necessary software
(to be discussed later). ArduPilot was set up to run as a system service on the flight controller,
and we carried out all necessary calibration of the accelerometers, gyroscopes, magnetometer, and
RC radio according to the ArduPilot guidelines [6].

2.2 Hardware Setup

The drones have essentially the same setup, but with slightly different configurations as they use
different companion boards. This section describes the systems generally, referring to the specific
companion boards only when necessary.

Figure 2 shows a diagram of the hardware setup for the two drones. The components and their
purposes are outlined below:

e 11.1 V LiPo Battery: this battery provides power to a battery eliminator circuit (BEC)
for isolation of the power system for the computational electronics (the flight controller and
companion board).

« BEC (Battery Eliminator Circuit): the BEC transforms 11.1V power to 5V power for
the flight controller and companion board. The flight controller and companion board each
have their own 4A channel to meet their given power requirements.

¢ Flight Controller: this combination of a Raspberry Pi 3 B4+ and Navio2 shield runs the
ArduPilot software to control the drone, and communicates with the companion board to
control the gimbal.

¢ Telemetry Radio: the telemetry radio provides two-way communication between the flight
controller and a ground control station that is also fitted with its own telemetry radio. It
is connected to the flight controller via USB. The software on the ground control station
provides an interface for real-time status messages and sending high-level commands.

¢ RC Receiver: the RC receiver provides a one-way radio link between the pilot’s transmitter
and the flight controller, allowing the pilot to manually control the drone. It is connected to
the flight controller via SBus which provides an 8-channel multiplexed PWM signal to reduce
the needed wires and space. This provides an interface for control by a human pilot, which is
often used in testing but will eventually be mostly unused.

e 22.2 V LiPo Battery: this battery provides power to the speed controllers and gimbal.

e Speed Controllers: the speed controllers receive a PWM signal from the flight controller
which indicates a throttle value. They then provide corresponding power signals to the motors.
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Figure 2: Hardware Setup

¢ Motors: the motors spin propellers to provide thrust in order to control the drone’s position
in the air.

e Gimbal: the gimbal controls the orientation of the camera based on PWM signals from the
flight controller which indicate target angles. Its onboard IMU and driver filter the motion of
the camera in order to provide a smooth camera image.

¢ Companion Board: the companion board reads an image from the camera and calculates
the position of the landing pad relative to the drone. It then communicates this information
to the flight controller via an Ethernet over USB connection using ROS.

2.3 Flight Controller Unit

The flight controller unit (FCU) on both drones is a Raspberry Pi 3 B+ with a mounted Navio2 [7]
shield. The Navio2 provides inertial measurement data to the onboard autopilot software ArduPilot,
which is available open source [8]. It runs as a system service in the Emlid distribution of the
Raspbian OS, which is designed specifically for the Navio2. ArduPilot provides modes for manual,
semi-autonomous, and fully autonomous flight. The ArduPilot software has mot been modified
for this project. A ROS [9] module called MAVROS [10] communicates with ArduPilot via its
MAVLink [11] language in order to enable networked communication with the companion boards.



2.4 Companion Boards

Each drone has a second onboard processor (in addition to the flight controller), called a companion
board, the point of which is to reduce the computational load on the flight controller, which must
run in real time. The companion board carries out the required video analysis, pose estimation,
coordinate system transforms, and instantiates PID controllers to aim the gimbal. It then sends
commands via MAVROS to the flight controller to act on this information. Connections between
the companion board and the FCU are minimized in order to maintain modularity and decrease
hardware and software invasiveness. Conveniently, each of the companion boards can act as a USB
host, providing Ethernet over USB with static IP addresses on each end. This means that the only
data connection between the companion board and the FCU is a single USB connection. Com-
munication is established by configuring the ROS instance on the companion board to use a ROS
Master instance on the FCU. This is accomplished simply by setting the ROS_MASTER_URI environ-
ment variable to the IP:port combination of the FCU, and setting the ROS_HOSTNAME environment
variable to the companion board’s hostname. Initial setups accomplished this same configuration
over a physical Ethernet connection, but the USB setup was proven more reliable given the space
limitations in the drones’ electronics compartments. (Physical pressure was put on the Ethernet
cables when the canopy was closed, breaking the connection unpredictably.) Kjartan also tested
a simulated Ethernet connection that was established from the Jetson Nano’s UART port to the
Raspberry Pi’s USB port using two PPP services - one on the Raspberry Pi and one on the Jetson
Nano. Acceptable connectivity between the boards when the services were configured to a baud
rate of about 1,000,000. However, this was ultimately less reliable than using the Jetson Nano’s
native USB host functionality because of issues with the PPP services not syncing during boot. Us-
ing Ethernet over USB also eliminated the extra static IP configuration required with conventional
Ethernet.

2.5 Camera Modules and Cases

A camera was needed for the UAV to visually identify the fiducial marker. The gimbal we used was
designed for a GoPro Hero 3, but the latency of GoPro video streams meant that a GoPro would be
unusable. Therefore, alternative cameras modules were used - namely, the IMX219-160 wide-angle
camera and the Google Coral camera module. These allow for near realtime video streaming and
analysis with the given companion boards. Kjartan and Joshua iteratively designed and tested
multiple camera cases (shown in Figure 3) to properly mount the camera modules in the gimbal’s
GoPro holder. We then 3D printed them and installed them on the drones. According to the
gimbal’s design, the lens of the GoPro is supposed to be slightly off-center in both the horizontal
and vertical directions. In early versions of the camera cases, the camera modules were positioned
in the same place. This meant that the modules would have to be rotated 90 degrees in order to
allow their data cables to extend out of a small slit the case without obstruction. The video feed
was then rotated back before video analysis. However, in later revisions of the camera cases, we
have positioned the lenses closer to the center of rotation in the pan and tilt axes. This allows room
for the camera’s ribbon cable to extend out of the bottom of the camera case without obstruction,
creates a neater and more reliable system, and eliminates the need for rotating the video feed
in software. The final camera modules are shown in Figures 4a and 4b. They were designed in
OpenSCAD and all .stl and .scad files are available freely on Thingiverse [12].



Figure 3: Iterations of the camera case design The camera module was gradually moved to the side
and oriented upwards in order to allow the best fit in the gimbal.
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(a) The case for the IMX219-160 camera module. (b) The case for the Google Coral camera module.

Figure 4: Cases to allow the alternative camera modules to fit into the gimbal’s GoPro mount. The
camera modules mount to the front with screws, and the front simply presses into the back. A slit
allows the camera’s ribbon cable to exit the bottom of the case.
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Figure 5: Iterations of the mounting plate design. The mounting plate was changed over time to
be more lightweight and allow flexible placement of data and power cables.

2.6 Component Mounting Plate

In initial tests, basic components were mounted to the drone using simple mounting tape. In later
tests, a more robust solution was required. Because of the specific component set, Joshua created
a lightweight mounting plate to accommodate both the components and an overhead canopy. A
canopy designed for the Tarot 680 was conveniently available directly on Thingiverse [13], and it
provides physical protection of the onboard electronics from moisture, dust, and other debris. A
mounting plate for the components (shown in Figure 6a) was designed to fit the top plate of the
drone. It mounts using screws in the unused holes in the top of the drone’s plate. Larger screw
holes allow the plate to sit flush against the drone’s top plate even with the existing screws which
stick up slightly. These screws also help to keep the mounting plate in place laterally. Larger central
holes allow wires to pass through the plate from the center to the electronics. Standoffs provide
a well-organized and stable mounting point for the flight controller and companion boards. The
vertical plates on the side provide a mounting place for the RC receiver and BEC. The hinge in the
back connects to the corresponding hinge on the canopy, and the slit in the front allows a Velcro
strap to hold the canopy closed. The hole in the canopy allows the GPS antenna to be mounted
externally. An additional hole was made to accommodate the antenna for the telemetry radio. A
specific mounting plate was created for each drone because the mounting holes for the companion
boards are different, but the mounting plates are otherwise the same. The mounting plates and
canopies were printed and installed on the drones iteratively, with slight changes each time. This
was designed in OpenSCAD and all .stl and .scad files are available on Thingiverse [14].
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(a) Component mounting plate. (b) The canopy top for the electronics.

Figure 6: The final mounting plate and canopy cover.
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Figure 7: Data flow.

2.7 Software Adaptation

This project represents the physical adaptation of an autonomous landing solution developed in
simulation in [15]. The first phase of software development in this project was the adaptation of
this software from the simulation environment to the physical drone system.

2.7.1 Video Input Processing

The Gazebo simulator in which this software was originally tested and developed provides simulated
camera modules which natively provide images as a ROS topic. Joshua and Kjartan replicated this
functionality with physical camera modules. This was done with a ROS package called gscam [16],
which is designed for this functionality and acts as an interface between GStreamer (a tool for
manipulating video and music files) [17] and ROS. On the Google Coral, this was accomplished
simply by using the gscam module alone, and on the NVIDIA Jetson Nano, this was accomplished
using gscam and an extension to it which is called jetson_csi_cam [18]. The gscam works with



GStreamer pipelines, which allow simple video manipulation such as rotation and resizing, and
ultimately stream the image to ROS as an image topic.

Initial tests shows an extremely high computation load and low framerate when identifying a
WhyCon marker from the camera stream at full resolution. In order to reduce the computational
requirements of the video analysis, the video stream is first resized by GStreamer to a manageable
640x480 resolution, from the native resolutions of 3280x2464 and 2582x1933 for the Jetson and
Coral camera modules respectively. The 640x480 resolution allowed the video to be analyzed at
about 30 frames per second, however this parameter is not necessarily optimal and could be changed
in the future. It provided a significant performance boost over the native resolutions which allowed
only a very slow analysis framerate. In the earlier revisions of the camera module cases, the video
was also rotated to the correct orientation using the GStreamer pipeline before analysis.

The camera’s intrinsic matrix and distortion coeflicients were found through the typical “chess-
board” calibration method using the ROS camera_calibration module [19] which is outlined in
the original thesis [15]. The Google Coral’s camera module has significantly less distortion than
the Jetson Nano’s wide-angle camera module because of its smaller field of view (84°vertically and
87.6°horizontally). The Jetson Nano’s camera module has a field of view of 160°diagonally. Its
large field of view makes it easier to detect fiducial markers at close range.

2.7.2 WhyCon Adaptation

The original landing software, tested in simulation, used both April Tag and WhyCon fiducial
markers, but only WhyCon is used on the physical systems in order to reduce computational load
on the companion board. For context, the April Tag module was only added for reliable estimation
of the yaw (rotation in the z-axis) of the landing platform, as there is some issue in determining
the yaw orientation of WhyCode markers (outlined in the original thesis [15]).

The whycon_ros module from LCAS [20] was only slightly modified for use in this project, and
the modifications are listed below:

First, the pixel positions u, v for the center of the marker were populated as part of the Why-
Con/Marker message. The u € [0,640] corresponds to the marker’s x position in the resized camera
frame, and v € [0,480] corresponds to the marker’s y position in the resized camera frame. These
pixel positions allow the gimbal controller to aim the camera directly at the marker with fewer
calculations than in the original software, since the pixel offset of the marker from the center of the
camera’s field of view corresponds roughly to physical angle offset between the marker’s position
and the camera’s rotation in space.

Second, an additional message attribute called theta, in the message definition, (hereafter
referred to as 0) describes the z-axis rotation of the marker in space according to the pixel placement
of its white and black regions. The centers of the white and black regions are not published as topics
by the module, but they are used in other calculations and are therefore easily available in the code.
If the black segment has center uy, vy and the white segment has center u,,, v,,, then 6 is calculated

as follows:
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(a) ID: 1 (b) ID: 2

Figure 8: Rotationally symmetric WhyCode markers.

Then 6 is the angle from the center of the marker to the center of its white region. This helps
to reduce some confusion that results from rotationally symmetric markers, such as 2-bit WhyCode
markers with IDs 1 and 2, shown in Figures 8a and 8b, in that orients the marker with respect to

the extended white region. In Figure 8a, § = —%, and in Figure 8b, § = . This provides a reliable
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yaw orientation value for the marker, but ultimately did not solve the issue discussed in Section

3.3.1 of the original thesis [15].

2.7.3 Gimbal Controller Adaptation

The gimbal controller ROS module [21] has been simplified from the original simulation-tested code,
in order to account for a simplified fiducial marker system. The original fiducial marker system
included both a WhyCon and April Tag marker. However, in lab testing, running both fiducial
systems was excessively processor intensive, typically requiring more than 50% of CPU time, and
so the April Tag marker was abandoned. The WhyCon marker alone used required less than 10%
of CPU time, although further analysis was outside the scope of this project. Overall, the purpose
of the gimbal controller is to center the WhyCon marker in the camera frame by changing the pan
and tilt angles of the gimbal using the pixel coordinates u, v of the detected WhyCon marker.

PID controllers provide a simple means of smoothly controlling actuators.[22] Two PID con-
trollers generate control effort signals which determine the rotation of the gimbal in its two axes.
They take as state inputs the normalized values of u,v which are u,,v, € [—1,1] and both have
constant set points (target state values) of 0. They generate control efforts in the interval [—1,1],
which are then converted to pulse width modulation (PWM) signals. These are standard signals
for servo control. The gimbal controller module sends these PWM signals to ArduPilot via the
MAVROS OverrideRCIn topic, and the flight controller generates the actual PWM signals on its
servo output rail, controlling the gimbal.

One of the challenges in using this setup is that the true angle of the gimbal is not known,
as the gimbal does not expose this information. The angles are estimated based on the known
minimum and maximum angles of the gimbal which can be set in firmware. The angles can be
estimated through linear interpolation from the control effort PWM signal to the angular range
of the gimbal in some axis. Using, for example, the pan axis: if the control effort PWM signal is
PWM,an, € [1000,2000], and the pan angle Opan € [—30,30], then 6, is calculated as in Equation
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This is only an estimate of the pan angle because the gimbal controller itself implements PID
controllers in all of its axes, meaning that the angle of the gimbal does not directly correspond to
the control signal when the entire gimbal is turning relative to its tilt axis. This happens when
the drone has some non-zero yaw velocity. We reduced this effect by commanding the drone to
maintain its yaw position throughout the course of landing.

Opan = —30 +

2.7.4 Landing Controller Adaptation

The purpose of the landing controller ROS module [23] is to use the information from the gimbal
controller to direct the drone towards the landing pad. Joshua adapted the landing controller
from the original version, which uses velocity targets, to a simpler version using positional targets.
The landing controller uses the estimated relative pose of the landing pad’s WhyCon marker as a
positional target. In order to calculate the positional target, the landing controller transforms the
WhyCon marker’s relative pose using transforms generated by the gimbal controller, which take
into account the 2-dimensional rotation (in the pitch and roll axes) as well as the yaw of the gimbal.
When the landing controller detects that the drone is in "GUIDED" mode and the motors are armed,
then the landing controller is enabled and publishes positional targets to the setpoint_raw/local
topic of MAVROS, which then relays the positional target to ArduPilot. The positional target is
the 3-dimensional displacement of the drone from the landing pad. It also has a positional offset
in the “north” (front) axis, meaning that the drone should land not directly on top of the marker,
but rather offset slightly in one direction. This allows the drone to track the marker throughout
its entire descent because the camera never gets prohibitively close to the marker, so the marker
always fits in the camera’s field of view. Similar projects have attempted to land directly on top of
the marker, which causes the marker to exceed the camera’s field of view and close distances and
become undetectable. Since the WhyCon marker has no inherent yaw orientation, no target yaw of
the drone is considered. This means that the drone can land around the landing pad with a radius
determined by its target positional offset in the north axis. Landing on a radius around the landing
pad, instead of on a specific point, is not ideal. In future work, a WhyCode marker will be used.
This is a necessary first step due to limitations on detecting the yaw of WhyCode markers, which
is discussed in Section 3.3.1 of the original thesis [15].

2.8 Landing Pad

After the software was adapted to the physical drone systems, a large WhyCon marker was printed
as a landing pad, as shown in Figure 9. It was then attached to a piece of plexiglass for rigidity. The
paper unfortunately does get dirty and absorbs moisture and must therefore be replaced from time
to time. This method reduces glossiness and glare on the landing platform, and provides exactitude
in the shape of the marker, as opposed to painting the marker by hand.
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Figure 9: The landing pad.

3 Results

3.1 Assembled Drones

Figures 10a and 10b show the fully assembled drones with the Jetson Nano (referred to as the Jetson
drone) and Google Coral (referred to as the Coral drone) respectively. The two different companion
boards were deliberately chosen in order to provide some comparison between the available systems.
Figures 10c and 10d show the electronics compartments of the drones. All electronics components
in each drone are the same except for the companion boards, camera modules, and the relevant
cables. These pictures show the placement of all of the components and their connections, as well
as the size difference between the Jetson Nano and the Google Coral. Although the Jetson Nano
was ultimately squeezed into the electronics compartment, its large size meant that it required most
of the space on the mounting plate. Its fan also extended vertically to nearly the top of the canopy.
The consequences of this are discussed in Section 4.3. By contrast, the Google Coral’s smaller form
factor (essentially the same as the Raspberry Pi) allows it to fit nicely, leaving even more room
for additional components and airflow. The BEC provides a static DC source which generates a
magnetic field, and as such it was placed as far away as possible from the compass and GPS receiver
(the black case on top of the canopy. The antenna for the telemetry radio extends vertically out
of the canopy, while the antennas for the RC receiver extend partially around the circumference
of the canopy. The space limitations mean that there is a lot of potential for electrical and radio
interference among the components. However, the different radio bands used by the components,
as well as the little available physical separation that was achieved through the placement of the
components, provide adequate performance during tests.

3.2 Automatic Gimbal Aiming

The performance of the gimbal controller to aim the camera at the marker was tested first in a
lab environment. The drone was left still, and the marker was initially positioned from at various
points in the camera’s view. The camera’s view of the marker was obscured so that the gimbal
would aim at an idle point, directly in front of the drone. Then, while the marker was kept in a
static location, the camera’s view was unblocked and the position of the marker in the camera’s
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(a) The Jetson drone. (b) The Coral drone.

(c) The Jetson drone’s electronics compartment.  (d) The Coral drone’s electronics compartment.

Figure 10: The assembled drones and their electronics compartments.
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frame was recorded for 10 seconds. The results for the Jetson drone are presented in Figures 11a
and 11b, and the results for the Coral drone are presented in Figures 11c and 11d. In order to
achieve reliable results, the maximum angular speed of the gimbal was reduced to 100 deg/s in
all axes. This gives the PID controllers adequate time to adjust their control effort outputs, and
decreases motion blur in the video stream, allowing easier recognition of the marker.

As shown in Figure 11a, the gimbal is able to keep the marker in view from a range of starting
points, and moves the camera towards the marker in the x axis. While many of the lines center the
marker at a position of 320 (out of 640) pixels, some of the lines do not approach this value. This is
because the angular range of the gimbal was limited to £30 degrees in the x axis, and the marker
was more than 30 degrees offset from the center of the camera when it was at its extreme position.
This is acceptable because of the 160°field of view of the Jetson’s camera module. In Figure 11b,
the performance of the gimbal controller in the y axis is shown. The gimbal is limited to [—90, 10]
in the y axis, and it is able to center the marker in the camera frame for all starting points. Low
PID coefficients were chosen, providing slow, smooth correction, which again is possible because of
the camera module’s wide field of view.

Since the Google Coral’s camera module has a smaller field of view, the PID settings were con-
figured to cause very quick adjustment of the camera’s position upon finding the marker. Although
this resulted in some oscillation which is visible in Figures 11c and 11d, the camera is still able to
track the marker successfully. Smaller PID coefficients sometimes result in a loss of the marker if the
marker moves too fast, while other configurations result in diverging oscillation. The integral gain
is particularly useful for slow, smooth control, but does cause oscillation if set too high, so it was
kept as high as possible while removing divergent oscillation. However, since it was not sufficiently
high, the camera does not fully center the marker for large negative angles which correspond to the
lines that do not converge to near v = 240. This is acceptable because the marker still stays in the
frame of the camera.

Ultimately the method for aiming the gimbal is successful. Moreover, in-motion tracking of
the marker gives consistent and smoother results, without oscillation. Still, more sophisticated
controllers than PID controllers could improve performance.

3.3 Flight Performance
3.3.1 Maiden Flights

The first flights of each drone were conducted over about 2 minutes each. Both drones performed
satisfactorily with basic hovering, horizontal and vertical movement, and yawing. The stock ArduPi-
lot PID controller configurations on every axis provided reliable control with no oscillation. The
drones were able to hold their positions in space even in the presence of wind. The frames were
robust in both flight and landing. The energy used for each of the 2-minute flights was about 700
mAh from a total capacity of 10,000 mAh on the larger battery. This energy consumption rate was
similar to all subsequent flights.

3.3.2 Stability

One of the main tasks of drone flight is simply to hover. Figure 12 illustrates the performance of
the drone in hovering for 30 seconds. It is able to maintain its orientation in the pitch and roll axes
quite well, even while changing altitude. The mean and standard deviation for the pitch and roll
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Figure 12: Attitude and altitude of the drone during 30 seconds of hovering.

Data | Mean | Standard Deviation
Pitch | -3.79° 1.37°
Roll | -0.53° 0.98°

Table 1: Attitude while hovering.

values during these 30 seconds are shown in Table 1. The included video “Initial Drone Flights”
provides a more intuitive way to view the stability of the drone’s flight performance.’

3.3.3 Initial Landing Attempts

The initial landing attempts were conducted as follows. A pilot manually hovered the drone over the
landing pad in order to provide the drone with a view of the WhyCon marker. Visual acquisition
of the marker was verified simply by ensuring that the gimbal was changing orientation to aim
the camera at the landing pad. After visual acquisition was confirmed, the drone was placed from
“STABILIZE” mode into “GUIDED” mode, enabling the landing controller to command the drone
using positional targets.

The first attempts were made with the Jetson Nano drone (as shown in Figure 13), whose
power issues prevented reliable visual acquisition of the landing pad. Although the drone was able
to successfully hover and all components except for the Jetson Nano ran without problems, the
landing attempts ultimately had to be delayed until these issues are fixed.

L«Initial Drone Flights” video: https://vimeo.com/461576798
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Figure 13: The Jetson drone in flight.

The next attempts were made with the Google Coral drone. This drone was able to successfully
identify and track the landing pad in flight. Upon switching to “GUIDED” mode, the drone
successfully approached the landing pad in the plane and decreased its height. However, because
of a combination of factors, the final touchdown was not successful. First the region of allowable
descent was too tight, meaning that the drone would have to land in an area defined by a 30cm
radius. This by itself is not a problem, but becomes a problem because of the inaccuracies in pose
estimation when the marker is viewed from extreme angles: the magnitude of the pose becomes
smaller than in actuality, meaning that a small positional drift by the drone can be perceived as a
prohibitively large positional drift. Essentially, the drone perceives itself as outside of the descent
region and attempts to correct its horizontal position before descending. Moreover, there is another
phenomenon at play called the “ground effect.” This occurs when the drone is close enough to the
ground that the air pushed by the propellers bounces off the ground and produces a secondary
thrust effect, changing the dynamics of the system [24]. It is harder for the drone to maintain
its position when it is close to the ground because of this extra turbulence. Therefore, although
the drone successfully approached the landing pad, attained an acceptable horizontal position for
landing, and descended to only about 5-10 centimeters from the ground, it never fully reached the
ground autonomously.

All of these issues represent surmountable challenges only, and specifically not prohibitive obsta-
cles. They can be solved with iterative adjustment of the landing control policy and re-calibration
of the WhyCon system, as well as possible filtering of the position of the landing pad. However, the
limited time for a summer project means that this is not yet accomplished. It is part of our future
work. So far, we have carried out 6 testing attempts, with multiple flights per attempt. These were
conducted just east of Reykjavik.
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4 Discussion

4.1 Supply Chain Issues

The Tarot 680 kit uses 28mm M2.5 machine screws which are atypical for Iceland and could not be
found. Moreover, half of such necessary screws were missing from the drone kits (4 missing for each
drone). This meant that only one drone could initially be assembled until a colleague graciously
retrieved some acceptable 30mm M2.5 machine screws from mainland Europe.

The Google Coral camera module uses a smaller ribbon cable than those compatible with the
Raspberry Pi and similar boards. The short ribbon cable that comes with the camera module is
unusable in this application because it does not allow the gimbal to move freely throughout its
entire range of motion. To solve this, several terminals were delicately removed by hand from an
existing, longer cable with the same terminal size. This cable was then successfully used both in the
lab and the field to provide good connectivity between the Google Coral and its camera module.

In general, the main connector used between components is a USB cable. However, the small
electronics compartment and the large number of components sitting therein meant that a lot of
these cables had to be modified to fit with the canopy completely closed. The stiff, plastic ends of
some of these cables were cut in order to make them take up less room, particularly in the case of
the Jetson Nano whose micro USB port was quite close to the canopy walls. Additionally, many of
these cables were shortened by cutting and re-soldering the wires to reduce space and weight.

4.2 ROS Installation

Installing the ROS software stack on the Jetson Nano and Google Coral can be a challenge because
of the number of dependencies and the specific operating systems which do not have as much
popularity as typical Linux distributions that ROS targets, such as basic Ubuntu. Significant
time was spent creating reliable installation instructions for both boards. Such instructions were
a necessary step, as a single working OS image is not adequate for the project since SD cards or
installations may otherwise fail, and the system may need to be reinstalled. On-board compilation
of ROS sources takes a long time but is ultimately not prohibitively time-consuming.

The Jetson Nano runs a modified version of Ubuntu 18.04 called Tegra, which comes with a lot
of desktop applications and games that were removed prior to the installation of ROS. These take
up a large portion of the system image that is provided by NVIDIA, and they are completely un-
necessary. Many of the necessary ROS modules use OpenCV, but are incompatible with OpenCV
4 which is provided on this system image. Therefore, OpenCV was downgraded to version 3.2
for compatibility. Many of the ROS dependencies can be installed through the Aptitude pack-
age manager on this board, but the whycon_ros, jetson_csi_cam, gscam, gimbal_controller,
and landing_controller modules were necessarily installed from source. After many attempts at
installation, with multiple ROS distributions, this method of combining binary and source instal-
lations worked on the board with the Melodic ROS distribution.

The Google Coral runs a modified version of Ubuntu 18.04 called Mendel Linux, which is much
more lightweight than Tegra. The Coral’s 8 GB of fast, onboard storage means that the Coral runs
generally more smoothly and boots more quickly than the Jetson Nano, which boots from an SD
card. However, an SD card was eventually needed for the ROS installation. This installation was
done entirely from source, although some binaries are provided through Aptitude. A swap file is
needed both for ROS installation and initialization.
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The ROS Melodic distribution was successfully installed on both boards, using dependencies for
Ubuntu 18.04 by setting the ROS_0S_O0VERRIDE environment variable to ubuntu:18.04:bionic.

4.3 Jetson Nano Power Consumption and Form Factor

Although the Jetson Nano itself can run without a problem given the setup of the electronic system
onboard its drone, the camera adds too much to the power requirements. The result is that the
Jetson Nano is unable to sustain operation reliably. Although in lab scenarios it is generally able
to successfully identify the landing pad, aim the gimbal, and generate a positional target based on
the landing pad’s pose, it tends to shut off when the computational load becomes high. Moreover,
the shutoff is akin to a brown-out in that the system voltage gradually decreases until the board
no longer functions. This led to the failure of multiple SD cards which the board uses as its main
storage and boot disk. A lot of overhead hours were spent identifying this issue and determining
eventually that the Jetson Nano is not suited for this application because of its power requirements.

The relatively large form factor of the Jetson Nano also means that it takes up a lot of valuable
space in the electronics compartment - both horizontally on the mounting plate, and vertically
towards the top of the canopy (as shown in Figure 10c¢). This is especially so when using the
recommended fan which mounts on top of the heat sink, which already takes up significant space.

4.4 Gimbal Quirks

The Tarot T-3D gimbal, used on both drones, is made for a Go Pro and calibrated for its weight.
The 3D-printed camera cases and their mounted modules ware significantly lighter than a GoPro,
and therefore created a weight imbalance in the roll axis of the gimbal, resulting in a higher-than-
normal idle load on the gimbal roll motor. Conceptually this is not a problem, as the gimbal is
still able to hold the camera smooth when the gimbal’s IMU senses vibration or other movement.
However, in static testing, the gimbal detects this higher effort and temporarily shuts off in order to
attempt to save the gimbal. Normally the higher effort would correspond to some physical block to
the gimbal’s motion, and there is a risk of burning out the motor if current is continuously applied.
To work around this behavioral quirk, and the closed source, black box gimbal firmware, additional
weight was added to the camera case for balance.

Although the gimbal does calculate its orientation and can provide it to its firmware GUI on a
Windows machine, it does not provide its orientation as data through an interface that can be read
by the flight controller. Although it is theoretically possible to reverse-engineer the communication
between the gimbal firmware and its IMU, this task is beyond the scope of the project and has
the potential to be extremely time-consuming. A first attempt to estimate the gimbal’s pan and
tilt angles was moderately successful, as explained in Section 2.7.3. However, this attempt was
ultimately abandoned because, although a simple PWM signal does communicate a target angle
to the gimbal, the gimbal only approaches this angle over a non-negligible amount of time using
its own PID controllers. This means that, if the gimbal controller calculates an angle based on
the PWM signal that is sending to the gimbal, that calculated angle will have some non-negligible,
transient error if the drone or the gimbal is in motion. Since both the drone and the gimbal are
constantly in motion in the flight scenarios of this project, determination of the gimbal’s orientation
is avoided, and all pose estimation is done strictly from the pose of the WhyCon marker on the
landing pad. Additionally, since the marker has no reliable yaw orientation, the pan (yaw) axis of
the gimbal is fixed straight ahead via a static PWM signal.
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4.5 Field Testing Restrictions and Environmental Limitations

A conservative testing methodology addresses the high risk of drone flight generally, as well as
material scarcity and restrictions on drone flight at the campus of Reykjavik University. Testing
was conducted outside the city of Reykjavik, and away from the airport, meaning that all flights
were extremely focused with a clear objective, in order to reduce the risk of expensive and time-
consuming crashes, battery consumption and travel overheads. In-lab testing was maximized. The
prevalence of high winds and rainy days significantly limited the available testing time. Even on
calmer days, overcast skies significantly decreased GPS accuracy and therefore manual control was
very important.

5 Conclusion

This project has demonstrated that fiducial markers can be used in combination with a gimbal-
mounted camera to localize and approach a landing pad reliably, even without knowing the orien-
tation of the gimbal. It is a proof of concept of many of the points addressed in simulation in the
original thesis [15]. While more testing is needed to determine a better landing policy, and more
development is needed for the WhyCode marker, nonetheless we have succeeded in building a drone
that is capable of both manual and autonomous flight, real-time video analysis, and fiducial marker
identification and tracking.

We have started communication with the maintainers of WhyCode in the Czech Republic and
will continue to integrate WhyCode markers into our system. We will also adjust the landing control
policy to reflect new knowledge of the performance of the drones during landing, and this will allow
us to carry out successful landings in the near future. We will also focus on solving the power issues
experienced with the Jetson Nano. Eventually we will test new methods of pose estimation and
control, with a focus on artificial intelligence and machine learning.
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